Hyperthermia inhibits recombination repair of gemcitabine-stalled replication forks.

نویسندگان

  • Mustafa Raoof
  • Cihui Zhu
  • Brandon T Cisneros
  • Heping Liu
  • Stuart J Corr
  • Lon J Wilson
  • Steven A Curley
چکیده

BACKGROUND Gemcitabine is a potent nucleoside analogue against solid tumors, but development of drug resistance is a substantial problem. Removal of gemcitabine incorporated into DNA by repair mechanisms may contribute to resistance in chemo-refractory solid tumors. Human hepatocellular carcinoma (HCC) is usually very chemoresistant to gemcitabine. METHODS We treated HCC in vitro and in vivo (orthotopic murine model with human Hep3B or HepG2 xenografts, 7-10 CB17SCID mice per group) with gemcitabine. The role of homologous recombination repair proteins in repairing stalled replication forks was evaluated with hyperthermia exposure and cell-cycle analysis. The Student t-test was used for two-sample comparisons. Multiple group data were analyzed using one-way analysis of variance. All statistical tests were two-sided. RESULTS We demonstrated that Mre11-mediated homologous recombination repair of gemcitabine-stalled replication forks is crucial to survival of HCC cells. Furthermore, we demonstrated inhibition of Mre11 by an exonuclease inhibitor or concomitant hyperthermia. In orthotopic murine models of chemoresistant HCC, the Hep3B tumor mass with radiofrequency plus gemcitabine treatment (mean ± SD, 180±91mg) was statistically significantly smaller compared with gemcitabine alone (661±419mg, P = .0063). CONCLUSIONS This study provides mechanistic understanding of homologous recombination inhibiting-strategies, such as noninvasive radiofrequency field-induced hyperthermia, to overcome resistance to gemcitabine in refractory human solid tumors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EEPD1 Rescues Stressed Replication Forks and Maintains Genome Stability by Promoting End Resection and Homologous Recombination Repair

Replication fork stalling and collapse is a major source of genome instability leading to neoplastic transformation or cell death. Such stressed replication forks can be conservatively repaired and restarted using homologous recombination (HR) or non-conservatively repaired using micro-homology mediated end joining (MMEJ). HR repair of stressed forks is initiated by 5' end resection near the fo...

متن کامل

Hydroxyurea-Stalled Replication Forks Become Progressively Inactivated and Require Two Different RAD51-Mediated Pathways for Restart and Repair

Faithful DNA replication is essential to all life. Hydroxyurea (HU) depletes the cells of dNTPs, which initially results in stalled replication forks that, after prolonged treatment, collapse into DSBs. Here, we report that stalled replication forks are efficiently restarted in a RAD51-dependent process that does not trigger homologous recombination (HR). The XRCC3 protein, which is required fo...

متن کامل

Cancer Biology and Signal Transduction BRCA2 andRAD51 Promote Double-Strand Break Formation and Cell Death in Response to Gemcitabine

Replication inhibitors cause replication fork stalling and double-strand breaks (DSB) that result from processing of stalled forks. During recovery from replication blocks, the homologous recombination (HR) factor RAD51mediates fork restart andDSB repair.HRdefects therefore sensitize cells to replication inhibitors, with clear implications for cancer therapy. Gemcitabine is a potent replication...

متن کامل

PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination.

If replication forks are perturbed, a multifaceted response including several DNA repair and cell cycle checkpoint pathways is activated to ensure faithful DNA replication. Here, we show that poly(ADP-ribose) polymerase 1 (PARP1) binds to and is activated by stalled replication forks that contain small gaps. PARP1 collaborates with Mre11 to promote replication fork restart after release from re...

متن کامل

Endonuclease EEPD1 Is a Gatekeeper for Repair of Stressed Replication Forks*

Replication is not as continuous as once thought, with DNA damage frequently stalling replication forks. Aberrant repair of stressed replication forks can result in cell death or genome instability and resulting transformation to malignancy. Stressed replication forks are most commonly repaired via homologous recombination (HR), which begins with 5' end resection, mediated by exonuclease comple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the National Cancer Institute

دوره 106 8  شماره 

صفحات  -

تاریخ انتشار 2014